Terence Tao’s disproof of Fuglede’s conjecture in dimension 5 and higher.

19.01.2022 11:30 - 12:15

Eduard Stefanescu (University of Vienna)

Terence Tao gives an example of a set Ω ⊂ R^5, such that for L²(Ω), there exists an orthonaormal basis {|Ω|^(-1/2)e^(2πiξj∗x): ξj ∈ Λ} for some discrete set Λ ⊂ R^5, but Ω does not tile R^5 by translations.

This disproves one direction of Fuglede’s conjecture.

 

Zoom link

We kindly ask you to use your full name.

Organiser:
K. Gröchenig, J. L. Romero, M. Ehler
Location:
Zoom meeting