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Admissible lattices are certain lattices in the Euclidean space R? which satisfy some
geometric admissibility condition. They have small discrepancy with respect to axes-parallel
rectangles, in the sense that the discrepancy only grows logarithmically in the measure of
the rectangle.

In the first part of this talk, we will summarize some basic properties of and construction
methods for admissible lattices, and state the theorem about their discrepancy. In the second
part, we will give a proof some parts of that theorem. We also mention connections to the
cubature of functions with bounded mixed derivatives.

Notation and basic definitions:

We always let d € N.

For ¢ € (0,00)% we write [0,q) = [0,q1) X -+ X [0, qq).

If z € RYand ¢ € (0,00)4, we consider axes-parallel rectangles of the form Q = z+/0, q).
We write p for the Lebesuge-measure and # for the cardinality of a set.

Given an invertible matrix A € R4 we call the set I' = AZ? a lattice. The dual
lattice of I" is defined as

M=A"TT={yeR|VyeTl: (y,7") € Z}.

The determinant of I' is defined as det(I') = | det(A)|.

The central question:

Given a rectangle Q = x + [0,q) and a lattice T C RY, how large is the discrepancy

Ar(Q) = u(Q) — detM#T N Q) 7

Some examples for ’bad’ lattices:

IfI'=7Z%and Q = z+[0,a)? with a > 0, then there is some constant C' > 0 such that

IAR(Q)] < C(a"" +1).



o ForT'=7?and Q =2 +10,a) x [0,b) with a,b > 0 and € R?, there is some constant
C > 0 such that
Ar(Q)] < Cla+b+1).

Thus, the discrepancy does not just depend on the measure pu(Q) = ab, but on the
individual side lengths, i.e. the eccentricity of the rectangle.

For admissible lattices, we have lower asymptotical bounds for |Ar|, which only depend
on the measure ;(Q) of the axes-parallel rectangle!

Definition 1. For A € R¢, we define the norm

(This is not a norm in the sense of vector spaces; the term 'mnorm’ comes from algebraic
number theory). Note that for ¢ € (0,00)? we have Nm(q) = ([0, q)).
For a lattice I' C R?, we define

Nm(I') = inf |Nm(y)].
m(l) = inf | |Nm(y)]

We call I' admissible if Nm(I") > 0.
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Figure 1: The admissible golden ratio lattice (defined further below) and the hyperbolas |y1y2| = 1.

From now on, I' is always assumed to be an admissible lattice.



Some basic properties of admissible lattices:

o If Q=2+10,¢) with u(Q) < Nm(I'), then #(I' N Q) < 1.

Proof by contradiction: Assume that v,7 € I' N @Q are two distinct points. Then
Y= <gqjforalj=1,...,d, so

Nm(T') < [Nm(y =) < Nm(q) = u(Q),
a contradiction.

e In more generality, if (@) is arbitrary, we have

1(Q)
Nm(T")

#TNQ) < { w <1+ Nm(D)u(Q).

Proof: We cover () by a union of axes-parallel rectangles Q1,...,Qxn, N € N, which

all have measure £1(Q);) = Nm(I'). We can do this with N = L\ﬁi%))-‘ rectangles, while

each rectangle contains at most one point from I'.
e If \ € (0,00)¢, then
det(diag(A\)I") = det(diag(\)) det(I') = Nm(\) det(T).

Similarly,
Nm(diag(A\)I') = Nm(A) Nm(I).

Thus, admissibility as property is invariant under dilations. Moreover, if Nm(\) = 1
(i.e. diag(A) is a unimodular dilation), then the determinant and norm of the lattice
remain unchanged.

e If Q =10,q), there is some A € (0,00)¢ with Nm()\) = 1 and a > 0 such that
diag(A)Q = [0,a)",

and in particular (@) = a?. Then

Ar(Q) = pu(@Q) —#(I'NQ)

where Nm(diag(A)I") = Nm(I') and det(diag(A)I") = det(I"). Thus, any upper bound
for |Ar ([0, a)?)| that only depends on Nm(T") and det(I") immediately can be extended
to all axes-parallel rectangles!

e [ is admissible < '™ is admissible.



Construction methods for admissible lattices:

o Let p(2) = 24+ a4 12971 + -+ + ag € Z[z] be an irreducible polynomial with integer

coefficients and d distinct, irrational roots oy, ..., aq € R. Then
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is admissible with Nm(T') = 1 (and det(I')> = Discriminant of p). The proof uses
Vieta’s formulas and follows the same idea as the next example.

e The golden ratio lattice: Consider p(z) = 22 — 2z — 1, which has has the roots ¢ =
(1++/5)/2 and —1/¢ = (1 — +/5)/2. This gives the lattice

_ 1 2 2
I'= (1 —1/¢)Z’

which is admissible with Nm(T') = 1 and det(T") = /5.
Proof: For (k1) € Z*\{(0,0)}, we have

Nm G _f/SO) (’;) = (k+1lp)(k—1/p) =k -2+ kl € Z.

Also (k+lp)(k—1/p) # 0, as each factor k+Ip and k—[/p can only vanish if k = [ = 0.
Thus we have Nm(v) € Z\{0} for all 4 € I'\{0}, which implies Nm(I") > 1.

On the other hand, (1,1)” € T, so Nm(T") < 1.

e In the two dimensional case, it can be shown that for «, 5 € R we have

I = (1 g) 7Z? is admissible <= «,f are distinct, badly approximable numbers.

A number is called badly approximable if its continued fraction expansion is bounded.

This leads to the following characterization of admissible lattices: I' C R? is admissible
if and only if there are distinct, badly approximable «, 3 € R and some A € (R\{0})?

such that
I' = diag(\) <1 g) /sl

In higher dimensions d > 3, there is no known characterization of admissible lattices
similar to this.



Upper bounds for the discrepancy:

Theorem 2 ([1)). Let I' be admissible with fundamental domain F. Let Q = [0,q) fo
€ (0,00)4. Then for p € (0,00), there exists a constant C = C(p,d,det(I"), Nm(T")) > 0
such that we have the following upper bounds for the discrepancy:

e LP-discrepancy for p € (0,00):

(/f |Ar(z + Q)" dx) " < Clog(2 + u(Q)) s

o L>-discrepancy:

sup [Ar(z + Q)] < Clog(2 + p(@)"

Relation to cubature formulas:

For some continuous function f : [0,1]¢ — C, we define the cubature error of f with respect
to I' by

e(f,T) = f(z)dx — det(T" Z f(y

d
[0:1] ~€erno,1]¢

Theorem 3 (|1]). Let T' C R? be an admissible lattice and f € C([0,1]?) supported inside of
0,1]9, i.e. f wanishes on the boundary of [0,1]¢. Assume that the mized partial derivative
O1..af exists. Let p € [1,00]. Then there is some constant C' = C(p,d,det(I'), Nm(I")) so
that:

e Forp e (1,00] and all a > 0 we have

le(f,al)| < C||dr_af [, a®log(2 +a") ="

e Forp=1 and all a > 0 we have

le(f,aDl)| < Cl0..af |l a®log(2 +a™ ")

There are many upper bounds |e(f,al')| similar in spirit to the above ones, where the
norm [|01_qf|, is replaced with a different notion of mirved smoothness [2, section 6.7][3]:

e Often, the norms of the lower-order mixed partial derivatives are also included: In
multi-index notation, these are the derivatives 9*f, where a € N& with ||a]| < 1.

e Stronger smoothness assumptions lead to smaller asymptotical bounds. Typically, one
considers the mixed partial derivatives 9% f for a € N, |||, < r where r > 1 is the
order of mixed smoothness.

e According Sobolev-, Besov- and Triebel-Lizorkin-space constructions do exist as well
and lead to upper cubature bounds [4].



The above theorem is interesting for the following reason: If I' is a non-admissible lattice
and we want to achieve an asymptotical bound |e(f,al’)| € O(a?) for a — 0, then we have
to assume f to be d-times differentiable such that [[0*f||, < oo for all a € N§ with [|a, < d.
That is, we need that all partial derivatives up to order d exist, including derivatives with
order greater than 1 in individual directions (like d;_1f). On the other hand, Skriganovs
theorem gives us an upper bound for |e(f,al’)| for admissible I" which is almost as good as
O(a?) but only requires the derivatives 9* f with ||a|| < 1 to exist and have finite LP-norm.
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