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Structure of the talk:

(1) Vague introduction

(2) Gauss’ circle problem

(3) The L2-discrepancy of a lattice and main theorems

(4) A spectral formula

(5) The bigger picture: Dynamical irregularities of distribution

1. Introduction

We are interested in understanding the statistics of counting functions

r 7−→ #(P ∩ rK)

as r → +∞, where P ⊂ Rd is a locally finite subset and K ⊂ Rd is, say, compact
with non-empty interior and rK = {rx |x ∈ K}. By ”statistics” we mean with
respect to some probability governed by varying P in some family of locally finite
sets, e.g. the set itself(often hard) or its translations(often more tractable). When
the point set P is sufficiently well-distributed, one often ”expects” the point set P
to have finite asymptotic density ρ = ρ(P ) > 0 in the sense that

lim
r→+∞

#(P ∩ rK)

|rK|
= ρ ∈ (0,+∞) .

Given this situation one is inclined to understand the rate of growth of the discrep-
ancy

DrK(P ) = #(P ∩ rK)− ρ|rK| = o(rd) . (1.1)

2. The Gauss circle problem

The classical Gauss circle problem (in arbitrary dimension) addresses the situ-
ation where P = Zd and K = B1(0). Here the counting function also has number
theoretic significance,

#(Zd ∩Br(0)) =

⌊r⌋2∑
m=1

rd(m)
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where

rd(m) = #{γ ∈ Zd | γ2
1 + · · ·+ γ2

d = m}

is the number of ways to represent a positive integer m as the sum of d squared
integers.

Lemma 2.1 (Gauss’ geometric estimate). There is an ro(d) > 0 such that

|Br(0)| − |Br(0)\Br−
√
d(0)| ≤ #(Zd ∩Br(0)) ≤ |Br(0)|+ |Br+

√
d(0)\Br(0)|

for every r ≥ ro(d).

Corollary 2.2. The integer lattice Zd has asymptotic density 1 in Rd and the dis-
crepancy over balls satisfies

|DBr(0)(Zd)| = O(rd−1) .

With very little effort we have improved on 1.1 for lattices, but the error bound
O(rd−1) is far from optimal. For the following statements we recall the Hardy-
Littlewood Ω-notation,

f(r) = Ω+(g(r)) ⇔ lim sup
r→+∞

f(r)

g(r)
> 0 , f(r) = Ω−(g(r)) ⇔ lim inf

r→+∞

f(r)

g(r)
< 0

and f(r) = Ω±(g(r)) if both hold. The expected result is the following.

Conjecture: DBr(0)(Zd) = O(rα(d)+ε) and DBr(0)(Zd) = Ω+(r
α(d)) where

α(d) =

{
1/2 if d = 2

d− 2 if d ≥ 3 .

We mention some known (many that are currently the best) asymptotics of the
lattice discrepancy over balls. For a nice survey on the best known results (in ’04),
see [1].

Theorem 2.3. The lattice point discrepancy over balls satisfies

• DBr(0)(Z2) = O(r
131
208

+ε) (Huxley) and DBr(0)(Z2) = Ω±(r
1
2 ) (Hardy)

• DBr(0)(Z3) = O(r
21
16

+ε) (Heath-Brown) and DBr(0)(Z3) = Ω±(r log(r)
1
2 ) (Tsang)

• DBr(0)(Z4) = O(r2 log(r)
2
3 ) (Walfisz) and DBr(0)(Z4) = Ω±(r

2 log2(r)) (Adhikari-
Pétermann)

• DBr(0)(Zd) = O(rd−2) and DBr(0)(Zd) = Ω+(r
d−2) for all d ≥ 5. (”well-

known”)

These results require heavy machinery from different areas of number theory,
and just using basic Fourier analysis does not result in these bounds. The difficulty
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in proving the conjecture is rooted in the wild behavior of the counting functions
rd, especially for d = 2, 3, 4.

3. Mean square discrepancy for lattices

Studying ”averages” of the lattice point discrepancy DZd(Br(0)) for large r is
often much more susceptible to Fourier analytic techniques. Today we’ll consider
the mean square discrepancy or L2-discrepancy

DL2

K (P ) =
(∫

[0,1)d
|DK(t+ P )|2dt

)1/2

with emphasis on the standard lattice and Euclidean balls, given by

DL2

Br(0)(Z
d) =

(∫
[0,1)d

|DBr(0)(t+ Zd)|2dt
)1/2

=
(∫

[0,1)d

∣∣∣#((t+ Zd) ∩Br(0))− |Br(0)|
∣∣∣2dt)1/2

.

A probabilistic interpretation is that DL2

Zd (Br(0)) is the standard deviation of the
random variable Nr : t 7→ #((t + Zd) ∩ Br(0)) with respect to the Lebesgue prob-
ability measure on the fundamental domain [0, 1)d of the lattice Zd. Indeed, the
expectation of this random variable is

E(Nr) =

∫
[0,1)d

#((t+ Zd) ∩Br(0))dt =

∫
[0,1)d

∑
γ∈Zd

χBr(0)(t+ γ)dt

=
∑
γ∈Zd

∫
[0,1)d+γ

χBr(0)(t)dt =

∫
Rd

χBr(0)(t)dt = |Br(0)| ,

so the variance is

Var(Nr) =

∫
[0,1)d

∣∣∣Xr(t)− E(Xr)
∣∣∣2dt

=

∫
[0,1)d

∣∣∣#((t+ Zd) ∩Br(0))− |Br(0)|
∣∣∣2dt = DL2

Br(0)(Z
d)2 .

Moreover, an interpretation from the point of view of statistical mechanics is that
the variance DL2

Br(0)
(Zd)2 records the spatial fluctuations of the spatially random

”crystal” t 7→ t+ Zd.

The main results we’ll discuss in today’s talk are due to Beck and Sobolev-
Parnovski respectively in [2, Thm 2A] and [3, Thm 3.1].
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Theorem 3.1 (Beck, ’87). Let P be locally finite and K compact and convex in Rd.
As r → +∞, one has

lim sup
r→+∞

DL2

rK(P )

r
d−1
2

> 0 .

We’ll prove this for P = Zd, K = B1(0).

Theorem 3.2 (Sobolev-Parnovski, ’99). As r → +∞, one has

lim inf
r→+∞

DL2

Br(0)
(Zd)

r
d−1
2

= 0

if and only if d ≡ 1 mod 4.

In fact, Sobolev-Parnovski prove that if d ≡ 1 mod 4 then there is a sequence
rj → +∞ and an absolute constant Cd > 0 such that

DL2

Brj (0)
(Zd) ≤ Cdr

d−1
2

j log(rj)
−1+ε
2d

for every ε > 0. Moreover, they prove that for any d there is a C ′
d > 0 such that

DL2

Br(0)(Z
d) ≤ C ′

dr
d−1
2 ,

so from Theorem 3.2 we see that

DL2

Br(0)(Z
d) ≍ r

d−1
2

if and only if d ̸= 1, 5, 9, 13, . . . .

Remark 3.3. When d = 2, the exponent d−1
2

= 1
2
matches the conjectured exponent

in the Gauss circle problem, so the exact behavior of the counting function #(Z2 ∩
Br(0)) is expected to have a slowly increasingly deviating error. This is in contrast
to higher dimensions, where it is not expected to hold.

4. A spectral formula

As observed in the survey by Brandolini-Travaglini, the function t 7→ DK(t+Zd)
is Zd-periodic by definition and piecewise continuous, so it admits a Fourier series

DK(t+ Zd) =
∑
γ∈Zd

cK(γ)e
2πi⟨t,γ⟩

for Lebesgue-almost every t with coefficients given by

cK(γ) =

∫
[0,1)d

DK(t+ Zd)e−2πi⟨t,γ⟩dt
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=

∫
[0,1)d

#((t+ Zd) ∩K)e−2πi⟨t,γ⟩dt− |K|χ{0}(γ) .

Since t 7→ e−2πi⟨t,γ⟩ is Zd-periodic, a similar computation to that of the expectation
E(Xr) above gives us

cK(γ) =

∫
Rd

χK(t)e
−2πi⟨t,γ⟩dt− |K|χ{0}(γ) = χ̂K(γ)(1− χ{0}(γ)) .

Thus Parseval’s Theorem yields

DL2

K (Zd)2 =

∫
[0,1)d

|DK(t+ Zd)|2dt

=
∑
γ∈Zd

|cK(γ)|2 =
∑

γ∈Zd\{0}

|χ̂K(γ)|2 .

Let us focus on the case K = Br(0). In the last section we sketch the computation
of the Fourier transform of χBr(0), resulting in

χ̂Br(0)(γ) =
( r

∥γ∥

) d
2
J d

2
(2πr∥γ∥) ,

where

Jν(z) =
zν

2νπ
1
2Γ(ν + 1

2
)

∫ π

0

e−iz cos(α) sin(α)2νdα , ν > −1

2

denotes the Bessel function of the first kind. The squared L2-discrepancy of the
standard lattice Zd over balls can now be written as

DL2

Br(0)(Z
d)2 = rd

∑
γ∈Zd\{0}

J d
2
(2πr∥γ∥)2

∥γ∥d
.

Before moving on to the proofs of the main theorems, we will need asymptotics of the
Bessel function Jd/2. For a proof of the following, see for instance Stein-Shakarchi’s
book ”Complex Analysis”, Appendix A, Section 1.

Lemma 4.1. As s → +∞, one has

Jν(s) =

√
2

πs
cos

(
s− 2ν + 1

4
π
)
+O(s−3/2) .

Since the series ∑
γ∈Zd\{0}

1

∥γ∥s
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converges for every s > d, we get that

DL2

Br(0)(Z
d)2 =

2

π
rd−1

∑
γ∈Zd\{0}

cos2(2πr∥γ∥ − d+1
4
π)

∥γ∥d+1
+O(rd−2) .

In particular, we can for every ε > 0 find an integer Nε ≥ 1 and a radius rε > 0
such that ∣∣∣DL2

Br(0)
(Zd)2

rd−1
− 2

π

∑
γ∈Zd\{0}
∥γ∥≤

√
Nε

cos2(2πr∥γ∥ − d+1
4
π)

∥γ∥d+1

∣∣∣ < ε (4.1)

for every r ≥ rε.

5. Proof of Theorem 3.1 for Zd

We show that

lim inf
R→+∞

1

R

∫ R

0

DL2

Br(0)
(Zd)2

rd−1
dr > 0 ,

from which it follows that there is a sequence rj → +∞ such that

inf
j

DL2

Brj (0)
(Zd)

r
d−1
2

j

> 0 .

From Equation 4.1 and the fact that

lim
R→+∞

1

R

∫ R

0

cos2(2πr∥γ∥ − d+1
4
π)dr =

1

2
,

we get

lim inf
R→+∞

1

R

∫ R

0

DL2

Br(0)
(Zd)2

rd−1
dr ≥ 1

π

∑
γ∈Zd\{0}
∥γ∥≤

√
Nε

1

∥γ∥d+1
− ε ,

which is positive for sufficiently small ε > 0.

6. Proof of Theorem 3.2

From Equation 4.1 we see that it suffices to prove that, if and only if d ≡ 1 mod 4,
there is for every finite collection γ1, . . . , γN ∈ Zd\{0} a sequence rj → +∞ such
that

lim
j→+∞

cos(2πrj∥γn∥ − d+1
4
π) = 0

for every n = 1, . . . , N .

6



First assume that d ≡ 1 mod 4. Then (d+ 1)/4 is an odd multiple of π/2, so

cos(2πr∥γ∥ − d+1
4
π) = ± sin(2πr∥γ∥) .

Consider the continuous surjective map S : RN → [0, 1]N given by

S(x1, . . . , xN) = (sin(2πx1), . . . , sin(2πxN)) .

This map is ZN -periodic, so it suffices to find a sequence rj → +∞ such that

(rjγ1, . . . , rjγN) + ZN → (0, . . . , 0) + ZN

in the torus RN/ZN as j → +∞. By compactness there is a sequence r′k → +∞
such that (r′kγ1, . . . , r

′
kγN) + ZN converges as k → +∞, and taking subsequences

kj, ℓj → +∞ such that
rj := r′kj − r′ℓj ≥ j

we get rj → +∞ and

lim
j→+∞

(rjγ1, . . . , rjγN) + ZN = (0, . . . , 0) + ZN

as desired.

For the converse implication, suppose d ̸≡ 1 mod 4 and assume that there is a
sequence rj → +∞ such that

lim
j→+∞

cos(2πrj∥γ∥ − d+1
4
π) = 0

for some γ ∈ Zd\{0}. Without loss of generality, we can assume that rj∥γ∥ + Z →
d+3
8

+ Z in the unit circle R/Z. Then for 2γ ∈ Zd\{0} we get

lim
j→+∞

cos(2πrj∥2γ∥ − d+1
4
π) = cos(d+5

4
π) ̸= 0

and we’re done.

7. The bigger picture: Dynamical irregularites of distribution

The key ingredients we used for understanding the L2-discrepancy of the stan-
dard lattice were

(1) the (compact) space Rd/Zd, measurably equivalent to [0, 1)d, with its trans-
lation invariant probability measure, and

(2) the spectral formula

DL2

Br(0)(Z
d)2 =

∑
γ∈Zd\{0}

|χ̂Br(0)(γ)|2 .
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These have analogues for a more general class of locally finite point sets P ⊂ Rd as
we describe now.

Let LF(Rd) denote the space of locally finite subsets of Rd endowed with the
vague topology, meaning that a sequence Pn ∈ LF(Rd) converges to P ∈ LF(Rd) if
for every continuous compactly supported f ∈ Cc(Rd), one has∑

p∈Pn

f(p) −→
∑
p∈P

f(p) .

It is then easy to check that the action of Rd on LF(Rd) by translations is a contin-
uous group action.

Fact: The space M+(Rd;Z) of integer-valued positive measures on Rd with the
vague topology is a Polish space (i.e. complete, separable and metrizable), see for
instance [4, Lemma 9.1.V]. However, we keep in mind that LF(Rd) ↪→ M+(Rd;Z) is
not complete in the vague topology, a simple counterexample being δ1/n+ δ0 → 2δ0.

Given P ∈ LF(Rd), one constructs its hull

ΩP = {t+ P ∈ LF(Rd) | t ∈ Rd} ,

where the closure is taken in the vague topology, and one verifies that the action
of Rd preserves ΩP . Note that one might have ∅ ∈ ΩP if P has arbitrarily large
”gaps” (more precisely when P is not relatively dense). Moreover, if P is uniformly
discrete, which means that ”gaps” have sizes uniformly bounded from below, one
can show that ΩP is compact. For the standard lattice Zd, we recover the torus
ΩZd = Rd/Zd. In particular, ∅ /∈ ΩZd . In general, the hull ΩP does not enjoy any
specific properties, but if one restricts their attention to the class of Delone sets,
meaning uniformly discrete and relatively dense subsets, then the hull is compact
and does not contain the empty set. Compactness ensures the existence of invariant
probability measures on ΩP , which is what we will use to define the L2-discrepancy
in this context.

Lemma 7.1 (Amenability). If P ∈ LF(Rd) such that ΩP is compact, then there is
a translation invariant probability measure on ΩP .

If ∅ ∈ ΩP then δ∅ is an invariant measure on ΩP , so we say that µ is non-trivial
if µ({∅}) = 0 in order to avoid this degenerate case. Moreover, such a non-trivial
measure µ is ergodic if µ(E) ∈ {0, 1} for every translation invariant Borel subset
E ⊂ ΩP . For example, the invariant probability measure on ΩZd = Rd/Zd is non-
trivial and ergodic.

Fact:(Extremality) There is an ergodic translation invariant probability measure
µ on ΩP .
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Given that ΩP admits a non-trivial invariant probability µ, there is first of all a
constant iP > 0 such that ∫

ΩP

#(P ′ ∩K)dµ(P ′) = iP |K|

for every compact K ⊂ Rd with non-empty interior. The constant iP is in a sense
the natural generalization of the covolume of a lattice. Secondly, we then define the
L2-discrepancy of (ΩP , µ) to be

DL2

K (µ) =
(∫

ΩP

∣∣∣#(P ′ ∩K)− iP |K|
∣∣∣2dµ(P ′)

)1/2

,

given that this quantity is well-defined. The existence of a spectral formula for this
general situation can be answered through the Bochner-Schwartz Theorem.

Theorem 7.2 (Bochner-Schwartz). Let (ΩP , µ) be a non-trivial measured hull. Then
there is a unique non-trivial positive Radon measure σµ on Rd such that∫

ΩP

∣∣∣∑
p∈P ′

f(p)− iP

∫
Rd

f(t)dt
∣∣∣2dµ(P ′) =

∫
Rd

|f̂(ω)|2dσµ(ω)

for every Schwartz function f ∈ S (Rd). Moreover, if µ is ergodic then σµ({0}) = 0.

In particular, the L2-discrepancy satisfies

DL2

K (µ)2 =

∫
Rd

|χ̂K(ω)|2dσµ(ω) .

The definition of the L2-discrepancy and this spectral formula extends more gener-
ally to any translation invariant probability measures µ on LF(Rd), in other words
to invariant point processes on Rd. For the standard lattice we had

σZd =
∑

γ∈Zd\{0}

δγ .

Beck’s Theorem, Theorem 3.1, now extends to non-trivial measured hulls and more-
over to the setting of general invariant point processes on Rd.

Remark 7.3. The largest generality for which all of this machinery works is for
invariant locally square-integrable random measures on Rd. The space M+(Rd) of
positive Radon measures on Rd is Polish in the vague topology and a translation
invariant probability measure µ on M+(Rd) is locally square-integrable if∫

p(K)2dµ(p) < +∞
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for all compact K ⊂ Rd. There is a constant iµ > 0, usually called the intensity of
µ, such that ∫

p(K)dµ(p) = iµ|K| ,

and the L2-discrepancy

DL2

K (µ) =
(∫ ∣∣∣p(K)− iµ|K|

∣∣∣2dµ(p))1/2

is well-defined, admitting a unique positive Radon measure σµ, usually called the
Bartlett spectrum, satisfying

DL2

K (µ)2 =

∫
Rd

|χ̂K(ω)|2dσµ(ω) .

for every compact K.

Theorem 7.4 (Beck, Björklund-B.). Let µ be a translation invariant (ergodic) lo-
cally square-integrable random measure on Rd. Then

lim sup
r→+∞

DL2

Br(0)
(µ)

r
d−1
2

> 0 .

Proof. We show as in the lattice case that

lim inf
R→+∞

1

R

∫ R

0

DL2

Br(0)
(µ)2

rd−1
dr > 0 .

To see this, first use the spectral formula,

1

R

∫ R

0

DL2

Br(0)
(µ)2

rd−1
dr =

∫
Rd

( 1

R

∫ R

0

J d
2
(2πr∥ω∥)2rdr

)dσµ(ω)

∥ω∥d+1
.

By Fatou’s lemma it suffices to show that

lim inf
R→+∞

1

R

∫ R

0

J d
2
(2πr∥ω∥)2rdr > 0

for every ω ∈ Rd. This integral was first computed by Lommel as

1

R

∫ R

0

J d
2
(2πr∥ω∥)2rdr = R

2

(
J d

2
(2πR∥ω∥)2 − J d−2

2
(2πR∥ω∥)J d+2

2
(2πR∥ω∥)

)
and using the asymptotic expansion in Lemma 4.1 we get that

R

2

(
J d

2
(2πR∥ω∥)2 − J d

2
(2πR∥ω∥)J d

2
(2πR∥ω∥)

)
=

=
1

π

(
cos2(2πR∥ω∥ − d+1

4 π))− cos(2πR∥ω∥ − d−1
4 π)) cos(2πR∥ω∥ − d+3

4 π))
)
+Od,ω(R

−1)
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=
1

π
+Od,ω(R

−1) .

Finally, we have shown that

lim inf
R→+∞

1

R

∫ R

0

DL2

Br(0)
(µ)2

rd−1
dr ≥ 1

π

∫
Rd

dσµ(ω)

∥ω∥d+1
> 0 .

□

Remark 7.5. The integral ∫
Rd

dσµ(ω)

∥ω∥d+1

can be infinite, and the potential divergence is a result of the behaviour of σµ close
to 0. If the integral is finite then µ is hyperuniform in the sense that

lim sup
r→+∞

DL2

Br(0)
(µ)

r
d
2

= 0 .

The notion of hyperuniformity has relevance in modern statistical physics and its
applications are investigated actively to this day.
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8. Sketch: Computing the Fourier transform of the indicator of a
ball

The Fourier transform of the indicator χBr(0) can be computed by introducing
polar coordinates,

χ̂Br(0)(γ) =

∫ r

0

(∫
Sd−1

e−2πit⟨u,γ⟩dHd−1(u)
)
td−1dt .

Here Hd−1 denotes the Hausdorff/surface measure on Sd−1. The inner integral can
be computed using standard coordinates on the unit sphere as∫

Sd−1

e−2πit⟨u,γ⟩dHd−1(u) = Hd−2(Sd−2)

∫ π

0

e−2πit∥γ∥ cos(α) sin(α)d−2dα ,

and if we consider Bessel functions of the first kind,

Jν(z) =
zν

2νπ
1
2Γ(ν + 1

2
)

∫ π

0

e−iz cos(α) sin(α)2νdα

then

χ̂Br(0)(γ) =
2

d−2
2 π

1
2Γ(d−1

2
)

(2π∥γ∥) d−2
2

Hd−2(Sd−2)

∫ r

0

J d−2
2
(2πs∥γ∥)s

d
2ds

=
2

d−2
2 π

1
2Γ(d−1

2
)

(2π∥γ∥)d
Hd−2(Sd−2)

∫ 2πr∥γ∥

0

J d−2
2
(s)s

d
2ds .

Having a look at your favorite table of integrals of Bessel functions, one finds∫ r

0

Jν(s)s
ν+1ds = Jν+1(r)r

ν+1

and keeping track of all constants, the formula for χ̂Br(0) simplifies to

χ̂Br(0)(γ) =
( r

∥γ∥

) d
2
J d

2
(2πr∥γ∥) .
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