L2-DISCREPANCIES FOR LATTICES AND BEYOND

MATTIAS BYLEHN

Structure of the talk:
1) Vague introduction

2) Gauss’ circle problem

(1)
(2)
(3) The L*-discrepancy of a lattice and main theorems
(4) A spectral formula

(5)

5) The bigger picture: Dynamical irregularities of distribution

1. INTRODUCTION

We are interested in understanding the statistics of counting functions
r— #(PNrK)

as r — 400, where P C R? is a locally finite subset and K C R? is, say, compact
with non-empty interior and rK = {rz |z € K}. By ”statistics” we mean with
respect to some probability governed by varying P in some family of locally finite
sets, e.g. the set itself(often hard) or its translations(often more tractable). When
the point set P is sufficiently well-distributed, one often ”expects” the point set P
to have finite asymptotic density p = p(P) > 0 in the sense that

lim #(PNrK)

= 0 .
r—-+00 |7’K| P < ( 7+OO>

Given this situation one is inclined to understand the rate of growth of the discrep-
ancy

D,k (P) = #(P 1K) — plrK| = o(r). (L1)

2. THE GAUSS CIRCLE PROBLEM

The classical Gauss circle problem (in arbitrary dimension) addresses the situ-
ation where P = Z¢ and K = B;(0). Here the counting function also has number
theoretic significance,

Lr)?
#(Z' 0 B.(0) = Y ra(m)

m=1



where

ra(m) = #{y € Z*| v} + - -+ + 75 = m}

is the number of ways to represent a positive integer m as the sum of d squared
integers.

Lemma 2.1 (Gauss’ geometric estimate). There is an r,(d) > 0 such that
B, (0)] = B (0\B, _ /5(0)| < #(2 1 B,(0)) < |B(0)] + |B,, /4(0)\B,(0)|
for every r > r,(d).

Corollary 2.2. The integer lattice Z% has asymptotic density 1 in RY and the dis-
crepancy over balls satisfies

D, ) (29| = O(r"™).

With very little effort we have improved on for lattices, but the error bound
O(r¢=1) is far from optimal. For the following statements we recall the Hardy-
Littlewood Q2-notation,

£) = () & tmsup L) 5 0, f(r) = 0_(gr)) & limint L < g

r—too 9(T) rtoo g(r)
and f(r) = Qx(g(r)) if both hold. The expected result is the following.
Conjecture: D, (o)(Z?) = O(r*@+¢) and Dp, (o) (Z%) = Q4 (r*@) where

1/2  ifd=2
_{d—2 ifd>3.

We mention some known (many that are currently the best) asymptotics of the
lattice discrepancy over balls. For a nice survey on the best known results (in ’04),
see [1].

Theorem 2.3. The lattice point discrepancy over balls satisfies

131

e Dp (0)(Z*) = O(r20s"¢) (Huzley) and Dp, o) (Z*) = Qi(r%) (Hardy)
e Dp 0)(Z%) = O(r%*<) (Heath-Brown) and Dp,0)(Z%) = Qu(r log(r)2) (Tsang)

e Dg (0)(Z*) = O(r? log(r)g) (Walfisz) and D, o) (Z*) = Q. (r*logy(r)) (Adhikari-
Pétermann)

e Dp.0)(Z2%) = O(r*™?) and Dp,0)(Z%) = Q.(r*"?) for all d > 5. (Twell-
known”)

These results require heavy machinery from different areas of number theory,
and just using basic Fourier analysis does not result in these bounds. The difficulty
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in proving the conjecture is rooted in the wild behavior of the counting functions
rq, especially for d = 2,3, 4.

3. MEAN SQUARE DISCREPANCY FOR LATTICES

Studying ”averages” of the lattice point discrepancy Dya(B,(0)) for large r is
often much more susceptible to Fourier analytic techniques. Today we’ll consider
the mean square discrepancy or L?-discrepancy

, 1/2
D (P) — (/ [Dic(t + P) )
[0,1)4
with emphasis on the standard lattice and Euclidean balls, given by

, 1/2
Dj,0)(27) = (/[ y Dp,0)(t + Zd)|2dt>
0,1

(o

A probabilistic interpretation is that D%(BT(O)) is the standard deviation of the
random variable N, : t — #((t + Z%) N B,(0)) with respect to the Lebesgue prob-
ability measure on the fundamental domain [0,1)¢ of the lattice Z¢. Indeed, the
expectation of this random variable is

1/2

#((t+ Z%) 1 B,(0)) — |Br(0)\‘2dt>

BOV) = [ ez 0B = [ o+

[0,1)¢

=> / XB,(0)(t)dt = / X.(0)(t)dt = [B-(0)],
d [071)d+7 R4

YEZ

so the variance is

Var(N,) = /

[0,1)¢

Moreover, an interpretation from the point of view of statistical mechanics is that
the variance Déi(o) (Z%)?* records the spatial fluctuations of the spatially random

"erystal” ¢ t 4+ Z%.

X, (t) — E(X,)| dt

4((t+ 2901 B,(0)) — | B(0)|| dt = DE ) (2)?

The main results we’ll discuss in today’s talk are due to Beck and Sobolev-
Parnovski respectively in |2, Thm 2A] and [3, Thm 3.1].
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Theorem 3.1 (Beck, '87). Let P be locally finite and K compact and convex in RY.
Asr — +00, one has

DL.(P
lim sup ”5;(1 ) >0.

r—-+00 r o2

We'll prove this for P = Z% K = B;(0).

Theorem 3.2 (Sobolev-Parnovski, '99). As r — 400, one has

DL (74
lim inf %E) =0

r——400 r2
if and only if d =1 mod 4.

In fact, Sobolev-Parnovski prove that if d = 1 mod 4 then there is a sequence
r; — +oo and an absolute constant Cy > 0 such that

d—1 —14e

DJLBZ ) (7% < C’dro log(r;) 2d

for every € > 0. Moreover, they prove that for any d there is a C?, > 0 such that

d—1

Dy (2" < Cir'T

so from Theorem [3.2] we see that

1

2 da—1
Dér(()) (Zd) =T 2
if and only if d £ 1,5,9,13,....

Remark 3.3. When d = 2, the exponent % = % matches the conjectured exponent
in the Gauss circle problem, so the exact behavior of the counting function #(Z? N
B,(0)) is expected to have a slowly increasingly deviating error. This is in contrast
to higher dimensions, where it is not expected to hold.

4. A SPECTRAL FORMULA

As observed in the survey by Brandolini-Travaglini, the function ¢ — D (t +Z%)
is Z-periodic by definition and piecewise continuous, so it admits a Fourier series

Di(t+2Z%) = ) ex(y)e*™

~EZ

for Lebesgue-almost every t with coefficients given by

cx(y) = Dy (t 4+ 24 27 gt
[0,1)4
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= [+ ZY AR Ko (7).
0,1

Since t — e~2™{t) is Z4-periodic, a similar computation to that of the expectation
E(X,) above gives us

cx(y) = /R ) X (D)e 2™ M dt — | K |x0y(7) = (1) (1 = xq03(7)) -

Thus Parseval’s Theorem yields

DE(Z4? = / Dic(t + 2 Pt

[0,1)
= Jex(MP= D Xe()I*.
yezd veza\{0}

Let us focus on the case K = B,(0). In the last section we sketch the computation
of the Fourier transform of xp, (), resulting in

d
N T\ 2
W) = () s Crribl)
where
Ju(z) = IZ—V /7T e @ gin(a)?da, v > 1l
2vr2l (v + 1) Jo 2

denotes the Bessel function of the first kind. The squared L2-discrepancy of the
standard lattice Z¢ over balls can now be written as

Ja(2mr|y[)?

L2 d\2 _ ..d

DBT(O)(Z> =r Z : ||7||d
yezZA\{0}

Before moving on to the proofs of the main theorems, we will need asymptotics of the
Bessel function J;/5. For a proof of the following, see for instance Stein-Shakarchi’s
book ”Complex Analysis”, Appendix A, Section 1.

Lemma 4.1. As s — 400, one has

Since the series

Z 1

ez 1l
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converges for every s > d, we get that

cos?(2rr|ly]| — 51m)

+ O(ré2y.
TG ™)

2
D, )(Z%) = —rth Y
y€Z\{0}

In particular, we can for every ¢ > 0 find an integer N, > 1 and a radius r. > 0
such that

2
D, 0)(Z9)° 2 Z cos?(2mr|ly| — Hn) (1)
TSR [l '
veZM\{0}
[7II<vNe

for every r > r..

5. PROOF oF THEOREM [3.1] For Z¢

We show that

1 R DL2 7,4)2
/ Dr,0&) dr >0,
0

lim inf —
R—+o00 T’d_ 1

from which it follows that there is a sequence r; — 400 such that

2
D5, (29
inf ————
J r; 2

> 0.

From Equation 4.1 and the fact that

lim 1 /R cos? (27 ||y|| — L 7)dr = 1
R—+o00 R 0 4 2 ’

we get
2
1 [®Dg (0)(Zd)2 1 1
lim inf — ———dr > — — —
RS oo /0 pi-1 =g Z EGE—.
vEZN{0}
IVI<vNe
which is positive for sufficiently small € > 0.

6. PROOF OF THEOREM
From Equation [4.T]we see that it suffices to prove that, if and only if d = 1 mod 4,

there is for every finite collection 7i,...,vx € Z%\{0} a sequence r; — +oo such
that
i 4 —dtly
jginoo cos(2mr;|| vl — F=m) =0

for everyn=1,..., N.



First assume that d = 1 mod 4. Then (d + 1)/4 is an odd multiple of 7/2, so
cos(2mr|y|| — Elw) = £ sin(2nr||v])) .
Consider the continuous surjective map S : RY — [0, 1]V given by
S(x1,...,xn) = (sin(27zy), ... ,sin(2rzy)) .
This map is Z"-periodic, so it suffices to find a sequence r; — +o00 such that
(rivi,- .., myn) +ZY = (0,...,0) + ZN

in the torus RY/ZN as j — 4o00. By compactness there is a sequence rj, — +00
such that (7}7y1,...,7.n) + ZY converges as k — +oo, and taking subsequences
k;j, €; — 400 such that

R | / .
Tj =Ty =Ty >

we get r; — 400 and

lim (r71,...,m9n) +ZN = (0,...,0) + ZN

Jj—+oo
as desired.

For the converse implication, suppose d # 1 mod 4 and assume that there is a
sequence 1; — 400 such that

; . _odl oy
lim_cos(2rr; ]| - 52m) = 0

for some v € Z?\{0}. Without loss of generality, we can assume that r;||v|| +Z —
43 1 7 in the unit circle R/Z. Then for 2y € Z%\{0} we get

- dbl_\ _ oo(d45
jEIJPoo cos(27r;]|2v|| — “Em) = cos(H2m) # 0

and we’re done.

7. THE BIGGER PICTURE: DYNAMICAL IRREGULARITES OF DISTRIBUTION

The key ingredients we used for understanding the L2-discrepancy of the stan-
dard lattice were

(1) the (compact) space R?/Z<, measurably equivalent to [0, 1)¢, with its trans-
lation invariant probability measure, and

(2) the spectral formula

2 o~
D5, o) (Z%)* = Z 1XB,0) (V)] -
yeZa\{0}
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These have analogues for a more general class of locally finite point sets P C R? as
we describe now.

Let LF(RY) denote the space of locally finite subsets of R? endowed with the
vague topology, meaning that a sequence P, € LF(R?) converges to P € LF(RY) if
for every continuous compactly supported f € C.(R%), one has

d ) — > ).

pEPn pGP

It is then easy to check that the action of R on LF(RY) by translations is a contin-
uous group action.

Fact: The space M, (R% Z) of integer-valued positive measures on R? with the
vague topology is a Polish space (i.e. complete, separable and metrizable), see for
instance [4, Lemma 9.1.V]. However, we keep in mind that LF(R?) — M, (R% Z) is
not complete in the vague topology, a simple counterexample being 0/, + dg — 2.

Given P € LF(R?), one constructs its hull

QOp=1{t+PecLERY)|fe R,

where the closure is taken in the vague topology, and one verifies that the action
of R? preserves Qp. Note that one might have @ € Qp if P has arbitrarily large
"gaps” (more precisely when P is not relatively dense). Moreover, if P is uniformly
discrete, which means that ”gaps” have sizes uniformly bounded from below, one
can show that p is compact. For the standard lattice Z?, we recover the torus
Qe = R4/7Z4. In particular, @ ¢ Qua. In general, the hull Qp does not enjoy any
specific properties, but if one restricts their attention to the class of Delone sets,
meaning uniformly discrete and relatively dense subsets, then the hull is compact
and does not contain the empty set. Compactness ensures the existence of invariant
probability measures on €p, which is what we will use to define the L2-discrepancy
in this context.

Lemma 7.1 (Amenability). If P € LF(RY) such that Qp is compact, then there is
a translation invariant probability measure on Qp.

If & € Qp then 4 is an invariant measure on (2p, so we say that p is non-trivial
if u({@}) = 0 in order to avoid this degenerate case. Moreover, such a non-trivial
measure  is ergodic if p(E) € {0,1} for every translation invariant Borel subset
E C Qp. For example, the invariant probability measure on ;4 = R%/Z is non-
trivial and ergodic.

Fact:(Extremality) There is an ergodic translation invariant probability measure
pon Qp.



Given that (2p admits a non-trivial invariant probability p, there is first of all a
constant ip > 0 such that

#(P'NK)du(P') = ip|K]|

Qp

for every compact K C R? with non-empty interior. The constant ip is in a sense
the natural generalization of the covolume of a lattice. Secondly, we then define the
L2-discrepancy of (2p, i) to be

PG = ([ [ om0 —islicaue))

given that this quantity is well-defined. The existence of a spectral formula for this
general situation can be answered through the Bochner-Schwartz Theorem.

Theorem 7.2 (Bochner-Schwartz). Let (Qp, i) be a non-trivial measured hull. Then
there is a unique non-trivial positive Radon measure o, on R? such that

/.

for every Schwartz function f € #(R?). Moreover, if i is ergodic then o, ({0}) = 0.

> 1) =ir [ s du) = [ Fe)Pdo,)

peP’

In particular, the L2-discrepancy satisfies
2 ~
Dy (n)* = » Xk (w)[*do,(w) -

The definition of the L2-discrepancy and this spectral formula extends more gener-
ally to any translation invariant probability measures y on LF(R?), in other words
to invariant point processes on R?. For the standard lattice we had

Ogd = Z 57 .
y€Z\{0}

Beck’s Theorem, Theorem [3.1 now extends to non-trivial measured hulls and more-
over to the setting of general invariant point processes on R

Remark 7.3. The largest generality for which all of this machinery works is for
invariant locally square-integrable random measures on RY. The space .#,(R?) of
positive Radon measures on R? is Polish in the vague topology and a translation
invariant probability measure pu on ., (R?) is locally square-integrable if

/ p(Kdp(p) < +oc
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for all compact K C R?. There is a constant i, > 0, usually called the intensity of
(t, such that

/MMW@szL

and the L2-discrepancy

D% ) = ([ |pt0) - 1| dut))

is well-defined, admitting a unique positive Radon measure o, usually called the
Bartlett spectrum, satisfying

DR (1 = | 18x () o).

for every compact K.

Theorem 7.4 (Beck, Bjorklund-B.). Let p be a translation invariant (ergodic) lo-
cally square-integrable random measure on R?. Then

DL’ !
limsup%ﬁ) >0.

r—400 T%
Proof. We show as in the lattice case that
1 [FDE (1)
liminf — BT(O)( )

——————dr >0.
R—+o00 R 0 T’d_l

To see this, first use the spectral formula,

1 (" Déi(o)(u)z 1 (R 9 do,(w)
E/O rd—_ldr = /Rd (EA J%(QTI'THWH) T'd?“)

loofj

By Fatou’s lemma it suffices to show that

R
%Igirgﬁ i J%(ZT&'T”M”)QTCZT >0

for every w € R?. This integral was first computed by Lommel as

1 R
= / Ty @] rdr = 5 (J3@rRI0)) ~ Jas @rRlw]) Jasz (25 R
0 2 2 2 2

and using the asymptotic expansion in Lemma we get that
R

o (Ta@rRIwI)? = Ja@rRIwl) T @nRIw])) =

_ —(cos2(27TRHw|| — L)) — cos(2mR||wl]| — 4L
™

7im)) cos(2mR|lw] — H2)) + Ogu(R)
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1 -1
= —+04u(R7).

Finally, we have shown that

1 [B Déi(O)(deT < l/ do,(w)

liminf —
R—+oc R J, rd-1 T Jpa ||wl|¢H

Remark 7.5. The integral

/ do,(w)
ret [|f|

can be infinite, and the potential divergence is a result of the behaviour of o, close
to 0. If the integral is finite then pu is hyperuniform in the sense that

2
. Dng(o) (1)
lim sup —————

r—+00 rz

=0.

The notion of hyperuniformity has relevance in modern statistical physics and its
applications are investigated actively to this day.
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8. SKETCH: COMPUTING THE FOURIER TRANSFORM OF THE INDICATOR OF A
BALL

The Fourier transform of the indicator xp, () can be computed by introducing
polar coordinates,

o0 = [ ([ e et ).
0 Sd-1

Here H4! denotes the Hausdorff/surface measure on S¢~!. The inner integral can
be computed using standard coordinates on the unit sphere as

/ e—27rit<u,7>d7_ld—1(u) — Hd—?(Sd_z) /ﬂ— e—QﬂitHyH cos(a) sin(oz)d_Qdoz ’
Sd-1 0

and if we consider Bessel functions of the first kind,

Ju(z) = 1z—>/ e~ =@ gin(a)?da
0

il (v + 3

then
Hi-2(542) / Jos (2ms|y])stds
0 2

2rr] ,
7-[ (SdQ)/ Jas(s)s2ds.
0 2

Having a look at your favorite table of integrals of Bessel functions, one finds

/ J,(s)s" T ds = J,p1(r)r" !
0

and keeping track of all constants, the formula for Xz, (o) simplifies to
T.00) = (7 H) Js @)
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